Datasheet (Preliminary)

Rev. 0.04/ Mar. 2025

TES0707

Methane Sensor

TES0707- Dual Channels NDIR CH4 Sensor Module

Introduction

TES0707 is an ultra-small dual channel NDIR sensor module with digital interfaces for CH4 concentration measurement.

The dual-channel NDIR CH4 sensor module, TES0707, offers excellent performance that overcomes the drift of a light source and CH4 over time by using Tempus' faster response NDIR sensors with its unique module structure.

TES0707 is a suitable sensor for gas leak alarming applications, and it is an ideal solution for customers who require low concentration precision.

TES0707 is with performance of high accuracy and stability at a reasonable price. It is an individually pre-calibrated module and possible to measure CH4 concentration up to 50,000ppm.

Features

- Ultra-Small Size
- Low Power
- High Accuracy and Excellent stability
- Absolute measurement with Dual-channel NDIR sensor
- Pre-calibrated and ready-to-use
- Digital interface using RS-232 and PWM
- Digital output for CH4 level warning. (ex: Warning When >1,500ppm)
- ABC feature support
- Manual Calibration support (@0ppm, 25°C)

Applications

- Mining
- Automation & Control
- Indoor Air Quality
- Industrial Health & Safety

TES0707

Specifications

Power Supp	Minimum	Typical	Maximum		
Operating voltage range	4.8 VDC	5 VDC	5.2 VDC		
Average Current Consumptio	n	38mA	39mA	40mA	
Temperature					
Operating Temperature			-40℃ to 75℃		
Storage Temperature			-20℃ to 55℃		
Humidity					
Operating Humidity		0%	50%	99%	
Storage Humidity	0%	50%	90%		
Pressure					
Operating Pressure			80kPa ~ 120kPa		
Storage Pressure		80kPa ~ 120kPa			
Output Signal		·			
Single Format		8 data bits, 1 stop bit, no parity			
Baud Rate		9600 bps Only			
Technical specifications	·				
Body Material		Stainless Steel			
Weight		20 g	23 g	25 g	

Typical Performance Characteristics

(All Data are related to a calibrated sensor and conditions: Temperature 20°C, Relative Humidity 20% RH, Pressure 101kPa, 1L/min Gas Flow, unless otherwise stated)

Item	Specification	
Gas	Methane	
Measurement Range	0 ~ 5%Vol	
	$0 \sim 1\%$: $\leq \pm 0.06\%$ Vol	
Accuracy	$1\% \sim 2.5\%$: $\leq \pm 6\%$ of reading	
	2.5%~full range : $\leq \pm 6\%$ of reading	
Resolution	1ppm	
Warm-up Time	< 50 seconds	
Maximum Response Time	e < 25 seconds	
(T ₉₀)		
Zero Repeatability	±0.01% Vol	

Digital Interfaces

The TES0707 has several digital intefaces such as RS232, PWM. Users control the register map through digital intefaces by reading and writing register values. This section describes each digital interface and the command/response map will be introduced in the next section.

1. UART Interface

TES0707 supports a RS232 Serial interface. Pin Rx is UART Rx (input to sensor) and Pin Tx is UART Tx (output from sensor). In detail, UART Conditions are :

- 9600 Baud rates
- No Parity Bit
- 1 Stop bit
- 8 Data bits
- No Flow control

Host can get more inforamtions like PPM, version info, serial number-via command/request data. Its message format is like as below

1.1 UART Protocol

Format of the Message

UART Request Message Format

2 b	yte	1 byte	1 byte	n byte	2 b	yte
SYNC1	SYNC2	CMD	LEN	DATA1DATAn	CRC1	CRC2

Туре	Size	Description
SYNC	2 byte	SYNC Data (0xAA, 0x55)
CMD	1 byte	Data length + 1 (including CMD + DATA)
LEN	1 byte	Data length (Number of valid data (in BYTEs) after LEN, excluding CRC
DATA	n byte	Data to be transmitted
CRC	2 byte	CRC Data

UART Response Message Format

2 b	yte	1 byte	1 byte	n byte	2 b	yte
SYNC1	SYNC2	CMD	LEN	DATA1DATAn	CRC1	CRC2

Туре	Size	Description
SYNC	2 byte	SYNC Data (0xBB, 0x66)
CMD	1 byte	Data length + 1 (including CMD + DATA)
LEN	1 byte	Data length (Number of valid data (in BYTEs) after LEN, excluding CRC
DATA	n byte	Data to be transmitted
CRC	2 byte	CRC Data

1.1.1 Command/Response List

Name	Code	Description
CMD_GET_PPM	0x14	Read PPM
CMD_GET_SERIAL	0x12	Read TES0707 Serial number
CMD_GET_VER	0x10	Read Firmware Version Information

READ PPM (CMD_GET_PPM)

This command will return the measured Methane result.

Request (UART)		
0xAA	SYNC1	
0x55	SYNC2	
0x14	CMD	
0x00	Length	
0x3E	CRC1	
0xEC	CRC2	

Response (UART)

OxBB	SYNC1
0x66	SYNC2
0x15	CMD (Response)
0x04	Length
DATA[1]	PPM (LSB)
DATA[2]	PPM
DATA[3]	PPM
DATA[4]	PPM (MSB)
хх	CRC1
xx	CRC2

To calculate the ppm, do the following.

$PPM = DATA[4] \ll 24 \mid DATA[3] \ll 16 \mid DATA[2] \ll 8 \mid DATA[1]$

SERIAL NUMBER (CMD_GET_SER)

This command will return serial number of the sensor. Length of serial number is 8 bytes.

Request (UART)		
0xAA	SYNC1	
0x55	SYNC2	
0x12	CMD	
0x00	Length	
0x3D	CRC1	
0x4C	CRC2	

Response	(UART)
----------	---	------	---

	-
OxBB	Sync (MSB)
0x66	Sync (LSB)
0x13	Response
0x08	Size
XX	S/N Byte 0 (LSB)
хх	S/N Byte 7 (MSB)
ХХ	CRC (LSB)
xx	CRC (MSB)

FIRMWARE VERSION (CMD_GET_VER)

This command will return the current firmware version number. Version number.is something such as v1.1.0

Request (UART)

0xAA	Sync (MSB)
0x55	Sync (LSB)
0x10	Command
0x00	Size
0x3C	CRC (LSB)
0x2C	CRC (MSB)

Response (UART)

0xBB	Svnc (MSB)
0,00	
0x66	Sync (LSB)
0x11	Response
0x03	Size
хх	Major
XX	Minor
XX	Build
ХХ	CRC (LSB)
XX	CRC (MSB)

TES0707

CRC API

```
uint16_t Calculate_CRC16 ( uint8_t *cmd , int cmd_length )
{
       uint16_t ret = 0xffff , polynomial = 0xa001 ;
       int shift = 0x0;
       for (int i = cmd_length - 1; i \ge 0; i \ge 0; i \ge 0
            unt16_t code = ( uint16_t )( cmd [ cmd_length -1 - i ] & 0xff );
            ret = ret ^ code ;
            shift = 0x0;
            while (shift \leq 7) {
                  if (ret & 0x1) {
                        ret = ret >> 1;
                        ret = ret ^ polynomial;
                  } else {
                        ret = ret >> 1;
                  }
                  shift++;
           }
      }
       return ret;
}
```


2. **PWM Operation**

PWM(Pulse Width Modulation) signal is a digital signal which is equivalent to analog output in power.

A general ADC is able to read PWM output through LPF. The circuit shows generic first order low pass filter for converting PWM to analog signal to read it through an analog to digital converter.

Simplified Low Pass Filter for PWM signal input to an ADC

TES0707 PWM output will be proportional to a 0 to 12500(1/4 LEL) ppm and operate at 0.8Hz. The user can measure the duration of PWM pulse.

TOTAL PERIOD	1251.0 ms
OUTPUT range	0 to 12500 ppm ^{*(1)}
Methane Level	Cppm = (PWM ON - 0.5) / (1250 / 12500)

General Performance

Zero ppm Stability (@60°C)

Pin Description

Typical T90 Response Time

Zero ppm Stability (@25°C)

Typical recovery Time (from 2.5% CH4)

Zero ppm Stability (@-10°C)

Pin	Name	Description
G	GND	GND Plane, (0 V)
V	VDD	Power Input (4.8 ~ 5.2V)
R	RX	Data received
D	Vout	PWM Output. See Application Note 1 Protocol Section
Т	ТХ	Data Transmitted
Note 1 : Do Not Solder Pins, Use sockets to push-fit the sensor in the instrument. Please refer to our handling precautions on page 4.		
Note 2 : Input voltage of 5.0v is Recommended		
Note 2 - All Diversities in such All to be an explored and the sector of A sector of the sector stated		

Note 3 : All Dimensions in mm. All tolerances Linear +- 0.1mm and Angular 0.5° unless otherwise stated.

Note 4 : Pins height 5.0mm (+- 0.2mm)

Precautions

Intended use

• This device has been designed to be used as component together with instruments to detect either flammable gas or carbon dioxide of certain concentrations. Please read recommended applications on page 2 for more details.

Handling

• This Sensor is a precision device. Do not drop it or subject it to excessive shock or force. Doing so may damage the Sensor or change its characteristics. Never subject the connector to unnecessary force. Do not use a Sensor that has been dropped.

- Take countermeasures against static electricity before you handle the Sensor.
- Keep the humidity between 0 to 90%.
- Use conductive or cotton type for gloves and finger cots.
- Wear a wrist strap on either the right or left hand.
- Turn OFF the power supply to the system before you install the Sensor. Working with the Sensor while the power supply is turned ON may cause malfunctions.
- Always check operation after you install the Sensor.
- Make sure to wire the polarity of the terminals correctly. Incorrect polarity may damage the Sensor.
- Never attempt to disassemble the Sensor.
- Avoid mechanical force against pins or sockets. Protect from dust and sprayed acidic particles.
- Do not immerse in water or other fluids.
- Do not solder the module directly onto a pcb or to wires. Excessive heat could cause damage.